ALCALOÏDES DES ANNONACÉES, 84.¹ BISAPORPHINOÏDES DE L'UNONOPSIS SPECTABILIS

OLIVIER LAPRÉVOTE, FRANÇOIS ROBLOT, REYNALD HOCQUEMILLER, et ANDRÉ CAVÉ*

Laboratoire de Pharmacognosie, UA 496 CNRS, 92296 Châtenay-Malabry Cedex, France

Le genre Unonopsis appartient, parmi les Annonacées, à la sous-famille des Annonoïdées, tribu des Unonées. Les écorces de l'espèce Unonopsis spectabilis Diels, appelé "icoja negro" au Pérou, sont utilisées en médecine locale en infusion contre les rhumatismes (P.J.M. Maas, Université d'État d'Utrecht, communication personnelle, 1984).

Dans le cadre d'une étude de la composition chimique des Annonacées, la séparation des constituants "neutres" effectuée à partir d'un extrait éthéropétrolique d'écorces de tronc d'U. specposés azotés. Il s'agit de trois bis-7,7' déhydronoraporphines, l'urabaine **[1]**, l'unonopsine **[2]**, et l'heteropsine **[3]**, les deux derniers étant des alcaloïdes nouveaux.

RÉSULTATS ET DISCUSSION

L'alcaloïde 1 a été obtenu sous forme d'une poudre microcristalline. Son spectre uv indique un système déhydroaporphinique (1-3), ce qui est confirmé par l'étude du spectre de rmn ¹H (cf. Tableau 1). Le spectre de masse montre un pic moléculaire à m/z 556

2

 $3b R = R' = CH_3$

tabilis a conduit à l'isolement de stérols et de triterpènes (β -sitostérol, stigmastérol, polycarpol) et de 5,5% de com(67%) et ne présente aucune fragmentation dans la région m/z 556-279, ce qui suggère une structure dimère (4-7). L'absence en rmn ¹H du signal correspondant au proton en 7 d'une déhydroaporphine, vers 6,60 ppm, révèle la

¹Alcaloïdes des Annonacées, 83; A. Jossang, M. Leboeuf, et A. Cavé, *Heterocycles*, **26**, 2191 (1987).

Atomes	Composés		
	1	2	3
H-3	7,12s(2H)	7,04s(2H)	7,05 s(1H) 7,14 s(1H) 2,07,2,40 = (8H)
Н-8	5,10-5,54 m(8n)	3, 10-3, 40 m(8 H)	$7,11 \mathrm{dd^b}(1\mathrm{H})$
H-8'	7,24 td ^b (2H)	7,23 td ^b (2H)	7, 15 dd ^b (1H) 7, 21-7, 29 m (2H)
H-10	} 7,36 td ^b (2H)	} 7,36 td ^b (2H)	7,34 td ^b (1H) et
H-10'			7,36 td ^b (1H) 9,06 dd ^b (1H)
H-11'	$9,64 dd^{9}(2H)$	} 9,07 dd ⁹ (2H)	9,67 dd ^b (1H)
$OCH_2O-1,2$		} 6,29s(4H)	6,2/s(2H)
OCH_3 -1	} 3,99s(6H)		4,00 s (3H)
$OCH_{3}-2'$	} 4,06s(6H)		4,06 s (3H)

TABLEAU 1. Déplacements Chimiques en rmn ¹H des Composés 1,2, et 3^a

^a250 MHz, CDCl₃, δ ppm/TMS. ^bJo=8 Hz, Jm=1,5 Hz.

liaison en 7,7' des deux unités déhydroaporphiniques. Les valeurs des déplacements chimiques données par le spectre de rmn ¹H ainsi que les constantes physiques de l'alcaloïde **1** sont identiques à celles observées pour l'urabaine, *bis*-7,7' déhydronoraporphine précédemment isolée dans notre laboratoire à partir d'*Oxandra xylopioides* Diels (5).²

Les spectres uv, de masse et de rmn ¹H des alcaloïdes 2 et 3 présentent de nombreuses analogies avec ceux de l'urabaine, prouvant leur nature *bis*-7,7' déhydronoraporphinique.

L'unonopsine [2] montre en sm un pic moléculaire à m/z 524 (100%) et un pic de demi-masse à m/z 262 (46%) sans fragmentation intermédiaire. La substitution en 1, 2, 1' et 2' par deux groupes méthylènedioxyle est indiquée, sur le spectre de rmn ¹H, par un singulet de quatre protons à 6,29 ppm, les protons en 3 et 3' résonnant en singulet à 7,04 ppm (cf Tableau 1). Les autres protons aromatiques présentent les signaux caractéristiques de cycles D et D' non substitués. Ceci permet d'attribuer à l'unonopsine $\{2\}$ la structure de la *bis*-7,7' déhydroanonaine.

La structure de l'heteropsine [3] a été déterminée par analogie avec celle des alcaloïdes 1 et 2. Il s'agit également d'une bis-7,7' déhydronoraporphine non substituée sur les cycles D et D'. La substitution différente des deux unités monomères, en 1, 2 et en 1', 2', est déduite du spectre de rmn ¹H où l'on retrouve les signaux d'un méthylènedioxyle et de deux méthoxyles, les protons en 3 et 3' apparaissant sous forme de deux singulets à 7,05 et 7,12 ppm (cf Tableau 1). L'heteropsine est donc constituée d'une unité déhydroanonaine liée par un pont C-7, C-7' à une unité déhydronornuciferine.

La N-méthylation des alcaloïdes 1 et 2, effectuée par MeI dans un mélange $CH_2Cl_2/MeOH$, a permis d'obtenir les dérivés mono N-méthylés [1a, 2a] et N,N'-diméthylés [1b, 2b]. A partir de

²Le nom d'O. *xylopioides* doit remplacer celui d'Oxandra cf major utilisé dans (5) (identification effectuée par le Professeur P.J.M. Maas).

l'alcaloïde 3, le produit N,N'-diméthylé 3b a été isolé à côté de deux dérivés 3a et 3a', mono N-méthylés respectivement sur la moitié déhydroanonaine ou déhydronornuciferine du dimère.

Sur les spectres de rmn ¹H des alcaloïdes mono N-méthylés, les groupements NCH₃ apparaissent en singulet à 2,49 ppm, déplacement chimique beaucoup plus faible que dans le cas des déhydroaporphines monomères (2,95 à 3, 10 ppm) (1-3). L'étude des modèles de Dreiding montre un empêchement de rotation autour de la liaison 7-7' et la possibilité de liaisons hydrogène dans le des bis-déhydroaporphines non cas méthylées ou mono N-méthylées, entre le groupe NH d'une moitié de la molécule et le doublet de l'azote de l'autre moitié. L'existence de ces liaisons intramoléculaires explique la très faible basicité de ces molécules qui se traduit à la fois par leur extraction en milieu neutre et par une polarité beaucoup plus faible, observée en ccm, que celle des dérivés N,N'-diméthylés. Chez ces derniers, la perte des liaisons hydrogène, associée à l'augmentation de l'angle dièdre entre les deux plans de la molécule, conduit à un blindage plus important des NCH₃ qui résonnent vers 2,30 ppm. Dans tous les cas, les déplacements chimiques à champ particulièrement fort des groupes NCH₂ s'expliquent à la fois par la perturbation du système ènamine du fait de la liaison 7-7' et par la conformation pseudoaxiale du NCH₃. Cette position est due à l'existence de ces liaisons hydrogène et à l'encombrement stérique.

La position pseudoaxiale du NCH₃ est confirmée en rmn ¹³C par un effet γ observé sur le C-4, comme en témoignent les valeurs publiées pour la déhydroglaucine (C-4 à 31,2 ppm), la méthyl-7 déhydroglaucine et la *bis*-7,7' déhydroglaucine (C-4 à 24,9 et 26,7 ppm respectivement) (8). Pour l'urabaine [**1**], les carbones 4 et 4' résonnent à 31,3 ppm, pour la N,N'-diméthylurabaine [**1b**], à 27,0 ppm et pour la *N*-méthyl urabaine [**1a**], à 31,4 ppm (C-4) et 27,1 ppm (C-4') (5).³

Les premiers bisaporphinoïdes naturels, de structure bis-4,7' aporphinique, ont été isolés chez une Annonacée, Polyalthia cauliflora var. beccarii (6). Puis, à partir de deux autres Annonacées, Popowia pisocarpa (4) et O. xylopioides (5), les premières bis-7,7' déhydroaporphines naturelles ont été mises en évidence. Il est important de souligner que dans le cas d'U. spectabilis comme dans celui d'O. xylopioides, les alcaloïdes ont été isolés à partir d'extraits éthéropétroliques et non à partir des alcaloïdes totaux. Deux des trois alcaloïdes isolés de U. spectabilis sont nouveaux, l'unonopsine [2] et l'heteropsine [3]. L'étude spectrale de ces composés et de leurs produits de Nméthylation a permis de prouver leur conformation et l'existence de liaisons intramoléculaires permettant d'expliquer leur faible basicité et les conditions particulières de leur extraction.

PARITE EXPERIMENTALE

Les spectres ont été enregistrés sur les appareils suivants: uv, Unicam SP 1800; ir, Perkin-Elmer 257; rmn ¹H (dans CDCl₃), Bruker (90 MHz) et Bruker WM 250 (250 MHz); sm, Nermag R-10-10-C.

MATÉRIEL VÉGÉTAL.—Les écorces de tronc d'U. spectabilis ont été récoltées au Pérou par P.J.M. Maas en Novembre 1984. Un échantillon d'herbier est déposé à Utrecht (cf collection Maas et coll. 6229).

EXTRACTION ET ISOLEMENT DES ALCA-LOÏDES.—Les écorces de tronc (1,5 kg) ont été pulvérisées puis extraites dans un appareil de Soxhlet par de l'éther de pétrole. L'extrait, mené à sec par évaporation sous pression réduite, a donné un résidu de 5,2 g. La séparation de ses constituants a été faite par chromatographie sur colonne de silice en utilisant comme éluant CH_2Cl_2 pur puis des mélanges $CH_2Cl_2/MeOH$ de polarité croissante. Parmi les produits neutres ont été isolés le polycarpol (40 à 50% de l'extrait total), le β -sitostérol (0,5%) et le stigmastérol (0,5%). Les alcaloïdes **1** (2%), **2** (1,5%), et **3** (2%) ont été

³Dans Arango *et al.* (5) les valeurs des C-4 et 4' à 29,8 ppm sont erronées et doivent être remplacées par celles indiquées ci-dessus.

séparés et purifiés par ccm préparative (CH_2Cl_2 -MeOH, 98:2).

IDENTIFICATION DES COMPOSÉS ISOLÉS.— Le polycarpol a été identifié après analyse de ses sm et de rmn ¹H (9) par comparaison avec un témoin (F mélangé, co-ccm). Le β -sitostérol et le stigmastérol ont été identifiés, après examen de leur spectre de rmn ¹H, par cpg comparativement à des témoins.

Urabaine [1], identifiée par ses données spectrales (5) et comparaison à un échantillon authentique.

N-MÉTHYLATION DE L'URABAINE [1]. L'urabaine (19 mg) est mise en solution dans CH_2Cl_2 (15 ml) additionné de 10% MeOH et laissée une nuit à température ambiante en présence d'un large excès de MeI (1 ml). Après évaporation du solvant, le résidu est soumis à une ccm préparative (CH_2Cl_2 -MeOH, 98:2). Deux produits ont été obtenus, la N-méthyl urabaine [1a] (80%) et la N,N'-diméthyl urabaine [1b] (15%). Ces produits sont en tous points identiques à ceux décrits dans (5).

Unonopsine [2].— $C_{34}H_{24}N_2O_4$, obtenue amorphe; uv λ max (EtOH) nm (log ϵ) 256 ép. (4,50), 270 (4,59); ir (KBr) ν cm⁻¹ 3360, 2900, 2820, 1620, 1600, 1580, 1495, 1450, 1380, 1330, 1300, 1210, 1115, 1085, 950, 930; rmn ¹H voir Tableau 1; smie m/z (%) 524 (M⁺⁺, 100), 263 (46), 262 (46), 261 (41), 232 (22), 202 (11).

N-MÉTHYLATION DE L'UNONOPSINE [2].— Par la méthode utilisée pour 1, ont été obtenues la N-méthyl unonopsine [2a] (25%, Rf \approx 0,75) et la N,N'-diméthyl unonopsine [2b] (75%, Rf \approx 0,25).

N-Métbyl unonopsine [2a].— $C_{35}H_{26}N_2O_4$, obtenue amorphe; uv λ max (EtOH) nm (log ϵ) 235 ép. (4, 12), 249 ép. (4, 19), 255 (4, 25), 261 (4, 28), 267 (4, 31), 284 ép. (4, 02), 335 (3, 72), 400 (3, 38); rmn ¹H (90 MHz) δ 2,49 (3H, s, NCH₃-6'), 3, 10-3,40 (8H, m, CH₂-4, 4', 5 et 5'), 6,27 (4H, s, OCH₂O-1, 2 et 1', 2'), 7,04 (1H, s, H-3), 7,07 (1H, s, H-3'), 7,10-7,40 (6H, m, H-8, 8', 9, 9', 10 et 10'), 9,07 (2H, d, J=8 Hz, H-11 et 11'); smie m/z (%) 538 (M⁺⁺, 100), 276 (34), 269 (17), 263 (22).

N,N'-Dimétbyl unonopsine [2b].— $C_{36}H_{28}N_2O_4$, obtenue amorphe; uv λ max (EtOH) nm (log ϵ) 235 (4,15), 256 ép. (4,22), 261 (4,23), 276 ép. (4,00), 336 (3,59); rmn ¹H (90 MHz) δ 2,30 (6H, s, NCH₃-6 et 6'), 3, 10-3,40 (8H, m, CH₂-4, 4', 5 et 5'), 6,27 (4H, s, OCH₂O-1, 2 et 1', 2'), 7,07 (2H, s, H-3 et 3'), 7, 10-7,40 (6H, m, H-8, 8', 9, 9', 10 et 10'), 9,11 (2H, d, J=8 Hz, H-11 et 11'); smie *m*/z (%) 552 (M⁺, 33), 290 (100), 276 (21).

Heteropsine [3]. $-C_{35}H_{28}N_2O_4$, obtenue amorphe; uv λ max (EtOH) nm (log ϵ) 256 ép. (4,36), 263 (4,39), 329 (3,75); ir (**KB**r) ν cm⁻¹ 3360, 2900, 2840, 1590, 1580, 1490, 1450, 1380, 1330, 1300, 1210, 1120, 1040, 1015, 760; rmn ¹H voir Tableau 1; smie *m/z* (%) 540 (**M**⁺⁺, 51), 270 (49), 263 (100), 232 (24).

N-MÉTHYLATION DE L'HETEROPSINE [3]. Par la méthode utilisée pour 1, ont été obtenus trois composés, le mélange des mono N-méthyl heteropsines [3a et 3a'] (40%, Rf \approx 0,70) et la N,N'-diméthyl heteropsine [3b] (60%, Rf \approx 0,20).

N-Méthyl beteropsines [**3a** et **3a**'].—Ces produits possèdent le même Rf et n'ont pu être séparés. L'analyse du spectre de rmn du mélange indique que les deux composés existent en pourcentage équivalent, le méthoxyle en 1' de chacun des produits apparaissant différencié. Rmn ¹H de **3a** (90 MHz) δ 2,49 (3H, s, NCH₃-6), 3,10-3,40 (8H, m, CH₂-4, 4', 5 et 5'), 3,98 ou 3,99 (3H, s, OCH₃-1'), 4,07 (3H, s, OCH₃-2'), 6,24 (2H, s, OCH₂O-1, 2), 7,05-7,10 (2H, m, H-3 et 3'), 7,11-7,45 (6H, m, H-8, 8', 9, 9', 10 et 10'), 9,07 (1H, d, J=8 Hz, H-11), 9,66 (1H, d, J=8 Hz, H-11'). Le spectre de rmn de **3a**' (NCH₃-6') est absolument identique à l'exception de la valeur de résonnance du OCH₃ en 1'.

N,N'-Dimétbylbeteropsine [**2b**].—C₃₇H₃₂N₂O₄, obtenue amorphe; uv λ max (EtOH) nm (log ϵ) 242 (4,43), 248 ép. (4,55), 254 (4,61), 259 (4,65), 265 (4,66), 285 ép. (4,37), 331 (4,06); rmn ¹H (90 MHz) δ 2,27 (6H, s, NCH₃-6 et 6'), 3,05-3,45 (8H, m, CH₂-4, 4', 5 et 5'), 4,00 (3H, s, OCH₃-1'), 4,06 (3H, s, OCH₃-2'), 6,24 (2H, s, OCH₂O-1, 2), 7,07 (1H, s, H-3), 7,13 (1H, s, H-3'), 7,10-7,45 (6H, m, H-8, 8', 9, 9', 10 et 10'), 9,11 (1H, d, J=8 Hz, H-11), 9,68 (1H, d, J=8 Hz, H-11'); smie m/z (%) 568 (M⁺⁺, 68), 553 (11), 306 (72), 290 (100), 284 (28).

REMERCIEMENTS

Les auteurs expriment leur gratitude au Professeur P.J.M. Maas de l'Institut de Botanique Systématique de l'Université d'État d'Utrecht, pour la récolte et l'identification du matériel végétal ainsi que pour les renseignements ethnopharmacologiques.

BIBLIOGRAPHIE

- H. Guinaudeau, M. Leboeuf, et A. Cavé, *Lloydia*. 38, 275 (1975).
- H. Guinaudeau, M. Leboeuf, et A. Cavé, J. Nat. Prod., 42, 325 (1979).
- H. Guinaudeau, M. Leboeuf, et A. Cavé, J. Nat. Prod. 46, 761 (1983).
- A. Jossang, M. Leboeuf, A. Cavé, et T. Sévenet, J. Nat. Prod., 49, 1028 (1986).
- G. Arango, D. Corres, et A. Cavé, *Phytochemistry*, 26, 1227 (1987).

- 6. A. Jossang, M. Leboeuf, et A. Cavé, Tetrabedron Lett., 23, 5147 (1982).
- A. Jossang, M. Leboeuf, A. Cavé, T. Sévenet, et K. Padmawinata, J. Nat. Prod., 47, 504 (1984).
- 8. L. Castedo, R. Riguera, et F.J. Sardina, An.

Quim., 78, 103 (1982).

 M. Hamonniére, A. Fournet, M. Leboeuf, A. Bouquet, et A. Cavé, C.R. Acad. Sci. Paris. Série C, 282, 1045 (1976).

Received 6 May 1987